Natural Superconvergence Points in Three-Dimensional Finite Elements
نویسندگان
چکیده
A systematic and analytic process is conducted to identify natural superconvergence points of high degree polynomial C0 finite elements in a three-dimensional setting. This identification is based upon explicitly constructing an orthogonal decomposition of local finite element spaces. Derivative and function value superconvergence points are investigated for both the Poisson and the Laplace equations. Superconvergence results are reported for hexahedral, pentahedral, and tetrahedral elements up to certain degrees.
منابع مشابه
Locating Natural Superconvergent Points of Finite Element Methods in 3d
In [20], we analytically identified natural superconvergent points of function values and gradients for several popular three-dimensional polynomial finite elements via an orthogonal decomposition. This paper focuses on the detailed process for determining the superconvergent points of pentahedral and tetrahedral elements.
متن کاملLagrange Interpolation and Finite Element Superconvergence
Abstract. We consider the finite element approximation of the Laplacian operator with the homogeneous Dirichlet boundary condition, and study the corresponding Lagrange interpolation in the context of finite element superconvergence. For ddimensional Qk-type elements with d ≥ 1 and k ≥ 1, we prove that the interpolation points must be the Lobatto points if the Lagrange interpolation and the fin...
متن کاملMixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements
Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...
متن کاملNatural Superconvergent Points of Equilateral Triangular Finite Elements – A Numerical Example
A numerical test case demonstrates that Lobatto and Gauss points are not natural superconvergent points for cubic and quartic finite elements under equilateral triangular mesh. 2000 Mathematics Subject Classification. Primary 65N30, Secondary 65N15, 41A10, 41A25, 41A27, 41A63.
متن کاملSuperconvergence and Extrapolation Analysis of a Nonconforming Mixed Finite Element Approximation for Time-Harmonic Maxwell's Equations
In this paper, a nonconforming mixed finite element approximating to the three-dimensional time-harmonic Maxwell’s equations is presented. On a uniform rectangular prism mesh, superclose property is achieved for electric field E and magnetic field H with the boundary condition E × n = 0 by means of the asymptotic expansion. Applying postprocessing operators, a superconvergence result is stated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 46 شماره
صفحات -
تاریخ انتشار 2008